Saturday, 22 October 2016

Gaussian Integers

Gaussian Integers

1 Introduction

The ring of Gaussian integers is given by [i] = {a + iba,b }. The units of [i] are {1,-1,i,-i}. The irreducible elements of [i] are the associates of

  • i + 1,
  • prime numbers p of such that p 3 mod 4 and
  • a + ib where p = a2 + b2 1 mod 4 is prime in .

Consider the factors of integers in [i].

Integer nFactors with positive real parts(n)



1 1 1
2 1, 1 + i , 1 - i , 2 5
3 1, 3 4
4 1, 1 - i, 1 + i, 2 - i, 2 + i, 4 13
5 1, 1 - 2i, 1 + 2i, 2 - i, 2 + i, 5,12

The function s(n) is the sum of the positive real parts of the factors.

Proposition 1 Let k 1. Then s(2k) = 5 2k-1 + 3 (2k-1 - 1).

Proposition 2 Let k 1 and p 3 mod 4 be prime. Then s(pk) = .

Proposition 3 Let k 0, pi 3 mod 4 be primes and ai 0 for i = 1, 2,,r. Then s(2k i=1rp iai) = s(2k) i=1rs(p iai).

Proposition 4 Let pi 3 mod 4, qj 1 mod 4 be primes and ai,bj 0 for i = 1, 2,,r and j = 1, 2,,s. Then

s( i=1rp iai j=1sq jbj) = i=1rs(p iai) s( j=1sq jbj).

Proposition 5 Suppose p 1 mod 4 such that p = σσ* where σ = a+ib [i]. Then s(p) = 1 + p + 2(a + b).

No comments: